Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS One ; 17(10): e0266292, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2079680

RESUMEN

OBJECTIVE: To determine whether modified K-12 student quarantine policies that allow some students to continue in-person education during their quarantine period increase schoolwide SARS-CoV-2 transmission risk following the increase in cases in winter 2020-2021. METHODS: We conducted a prospective cohort study of COVID-19 cases and close contacts among students and staff (n = 65,621) in 103 Missouri public schools. Participants were offered free, saliva-based RT-PCR testing. The projected number of school-based transmission events among untested close contacts was extrapolated from the percentage of events detected among tested asymptomatic close contacts and summed with the number of detected events for a projected total. An adjusted Cox regression model compared hazard rates of school-based SARS-CoV-2 infections between schools with a modified versus standard quarantine policy. RESULTS: From January-March 2021, a projected 23 (1%) school-based transmission events occurred among 1,636 school close contacts. There was no difference in the adjusted hazard rates of school-based SARS-CoV-2 infections between schools with a modified versus standard quarantine policy (hazard ratio = 1.00; 95% confidence interval: 0.97-1.03). DISCUSSION: School-based SARS-CoV-2 transmission was rare in 103 K-12 schools implementing multiple COVID-19 prevention strategies. Modified student quarantine policies were not associated with increased school incidence of COVID-19. Modifications to student quarantine policies may be a useful strategy for K-12 schools to safely reduce disruptions to in-person education during times of increased COVID-19 community incidence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cuarentena , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Prospectivos , Estudiantes , Políticas
2.
Public Health Rep ; 137(3): 557-563, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1673689

RESUMEN

OBJECTIVE: Saliva specimens collected in school populations may offer a more feasible, noninvasive alternative to nasal swabs for large-scale COVID-19 testing efforts in kindergarten through 12th grade (K-12) schools. We investigated acceptance of saliva-based COVID-19 testing among quarantined K-12 students and their parents, teachers, and staff members who recently experienced a SARS-CoV-2 exposure in school. METHODS: We surveyed 719 participants, in person or by telephone, who agreed to or declined a free saliva-based COVID-19 reverse-transcription polymerase chain reaction test as part of a surveillance investigation about whether they would have consented to testing if offered a nasal swab instead. We conducted this investigation in 6 school districts in Greene County (n = 3) and St. Louis County (n = 3), Missouri, from January 25 through March 23, 2021. RESULTS: More than one-third (160 of 446) of K-12 students (or their parents or guardians), teachers, and staff members who agreed to a saliva-based COVID-19 test indicated they would have declined testing if specimen collection were by nasal swab. When stratified by school level, 51% (67 of 132) of elementary school students or their parents or guardians would not have agreed to testing if a nasal swab was offered. CONCLUSIONS: Some students, especially those in elementary school, preferred saliva-based COVID-19 testing to nasal swab testing. Use of saliva-based testing might increase voluntary participation in screening efforts in K-12 schools to help prevent the spread of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Humanos , Saliva , Manejo de Especímenes , Estudiantes
3.
JAMA Netw Open ; 4(6): e2115850, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1251884

RESUMEN

Importance: Contact tracing is a multistep process to limit SARS-CoV-2 transmission. Gaps in the process result in missed opportunities to prevent COVID-19. Objective: To quantify proportions of cases and their contacts reached by public health authorities and the amount of time needed to reach them and to compare the risk of a positive COVID-19 test result between contacts and the general public during 4-week assessment periods. Design, Setting, and Participants: This cross-sectional study took place at 13 health departments and 1 Indian Health Service Unit in 11 states and 1 tribal nation. Participants included all individuals with laboratory-confirmed COVID-19 and their named contacts. Local COVID-19 surveillance data were used to determine the numbers of persons reported to have laboratory-confirmed COVID-19 who were interviewed and named contacts between June and October 2020. Main Outcomes and Measures: For contacts, the numbers who were identified, notified of their exposure, and agreed to monitoring were calculated. The median time from index case specimen collection to contact notification was calculated, as were numbers of named contacts subsequently notified of their exposure and monitored. The prevalence of a positive SARS-CoV-2 test among named and tested contacts was compared with that jurisdiction's general population during the same 4 weeks. Results: The total number of cases reported was 74 185. Of these, 43 931 (59%) were interviewed, and 24 705 (33%) named any contacts. Among the 74 839 named contacts, 53 314 (71%) were notified of their exposure, and 34 345 (46%) agreed to monitoring. A mean of 0.7 contacts were reached by telephone by public health authorities, and only 0.5 contacts per case were monitored. In general, health departments reporting large case counts during the assessment (≥5000) conducted smaller proportions of case interviews and contact notifications. In 9 locations, the median time from specimen collection to contact notification was 6 days or less. In 6 of 8 locations with population comparison data, positive test prevalence was higher among named contacts than the general population. Conclusions and Relevance: In this cross-sectional study of US local COVID-19 surveillance data, testing named contacts was a high-yield activity for case finding. However, this assessment suggests that contact tracing had suboptimal impact on SARS-CoV-2 transmission, largely because 2 of 3 cases were either not reached for interview or named no contacts when interviewed. These findings are relevant to decisions regarding the allocation of public health resources among the various prevention strategies and for the prioritization of case investigations and contact tracing efforts.


Asunto(s)
COVID-19/prevención & control , Trazado de Contacto , Salud Pública , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Trazado de Contacto/estadística & datos numéricos , Análisis Costo-Beneficio , Estudios Transversales , Revelación/estadística & datos numéricos , Servicios de Salud del Indígena , Humanos , Incidencia , Prevalencia , SARS-CoV-2 , Teléfono , Estados Unidos/epidemiología
4.
Am J Public Health ; 111(5): 867-875, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1140586

RESUMEN

Laboratory diagnostics play an essential role in pandemic preparedness. In January 2020, the first US case of COVID-19 was confirmed in Washington State. At the same time, the Washington State Public Health Laboratory (WA PHL) was in the process of building upon and initiating innovative preparedness activities to strengthen laboratory testing capabilities, operations, and logistics. The response efforts of WA PHL, in conjunction with the Centers for Disease Control and Prevention, to the COVID-19 outbreak in Washington are described herein-from the initial detection of severe acute respiratory syndrome coronavirus 2 through the subsequent 2 months.Factors that contributed to an effective laboratory response are described, including preparing early to establish testing capacity, instituting dynamic workforce solutions, advancing information management systems, refining laboratory operations, and leveraging laboratory partnerships. We also report on the challenges faced, successful steps taken, and lessons learned by WA PHL to respond to COVID-19.The actions taken by WA PHL to mount an effective public health response may be useful for US laboratories as they continue to respond to the COVID-19 pandemic and may help inform current and future laboratory pandemic preparedness activities.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Laboratorios , Objetivos Organizacionales , Desarrollo de Programa , Salud Pública , COVID-19/epidemiología , COVID-19/prevención & control , Centers for Disease Control and Prevention, U.S. , Humanos , Sistemas de Información , Estados Unidos , Washingtón/epidemiología
5.
MMWR Morb Mortal Wkly Rep ; 69(38): 1360-1363, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: covidwho-792612

RESUMEN

Contact tracing is a strategy implemented to minimize the spread of communicable diseases (1,2). Prompt contact tracing, testing, and self-quarantine can reduce the transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (3,4). Community engagement is important to encourage participation in and cooperation with SARS-CoV-2 contact tracing (5). Substantial investments have been made to scale up contact tracing for COVID-19 in the United States. During June 1-July 12, 2020, the incidence of COVID-19 cases in North Carolina increased 183%, from seven to 19 per 100,000 persons per day* (6). To assess local COVID-19 contact tracing implementation, data from two counties in North Carolina were analyzed during a period of high incidence. Health department staff members investigated 5,514 (77%) persons with COVID-19 in Mecklenburg County and 584 (99%) in Randolph Counties. No contacts were reported for 48% of cases in Mecklenburg and for 35% in Randolph. Among contacts provided, 25% in Mecklenburg and 48% in Randolph could not be reached by telephone and were classified as nonresponsive after at least one attempt on 3 consecutive days of failed attempts. The median interval from specimen collection from the index patient to notification of identified contacts was 6 days in both counties. Despite aggressive efforts by health department staff members to perform case investigations and contact tracing, many persons with COVID-19 did not report contacts, and many contacts were not reached. These findings indicate that improved timeliness of contact tracing, community engagement, and increased use of community-wide mitigation are needed to interrupt SARS-CoV-2 transmission.


Asunto(s)
Trazado de Contacto/estadística & datos numéricos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , COVID-19 , Humanos , Incidencia , North Carolina/epidemiología
6.
N Engl J Med ; 382(22): 2081-2090, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: covidwho-116920

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can spread rapidly within skilled nursing facilities. After identification of a case of Covid-19 in a skilled nursing facility, we assessed transmission and evaluated the adequacy of symptom-based screening to identify infections in residents. METHODS: We conducted two serial point-prevalence surveys, 1 week apart, in which assenting residents of the facility underwent nasopharyngeal and oropharyngeal testing for SARS-CoV-2, including real-time reverse-transcriptase polymerase chain reaction (rRT-PCR), viral culture, and sequencing. Symptoms that had been present during the preceding 14 days were recorded. Asymptomatic residents who tested positive were reassessed 7 days later. Residents with SARS-CoV-2 infection were categorized as symptomatic with typical symptoms (fever, cough, or shortness of breath), symptomatic with only atypical symptoms, presymptomatic, or asymptomatic. RESULTS: Twenty-three days after the first positive test result in a resident at this skilled nursing facility, 57 of 89 residents (64%) tested positive for SARS-CoV-2. Among 76 residents who participated in point-prevalence surveys, 48 (63%) tested positive. Of these 48 residents, 27 (56%) were asymptomatic at the time of testing; 24 subsequently developed symptoms (median time to onset, 4 days). Samples from these 24 presymptomatic residents had a median rRT-PCR cycle threshold value of 23.1, and viable virus was recovered from 17 residents. As of April 3, of the 57 residents with SARS-CoV-2 infection, 11 had been hospitalized (3 in the intensive care unit) and 15 had died (mortality, 26%). Of the 34 residents whose specimens were sequenced, 27 (79%) had sequences that fit into two clusters with a difference of one nucleotide. CONCLUSIONS: Rapid and widespread transmission of SARS-CoV-2 was demonstrated in this skilled nursing facility. More than half of residents with positive test results were asymptomatic at the time of testing and most likely contributed to transmission. Infection-control strategies focused solely on symptomatic residents were not sufficient to prevent transmission after SARS-CoV-2 introduction into this facility.


Asunto(s)
Enfermedades Asintomáticas , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/transmisión , Transmisión de Enfermedad Infecciosa , Neumonía Viral/transmisión , Instituciones de Cuidados Especializados de Enfermería , Anciano , Anciano de 80 o más Años , Betacoronavirus/genética , COVID-19 , Comorbilidad , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/mortalidad , Tos/etiología , Transmisión de Enfermedad Infecciosa/prevención & control , Disnea/etiología , Femenino , Fiebre/etiología , Genoma Viral , Humanos , Control de Infecciones/métodos , Masculino , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/diagnóstico , Neumonía Viral/mortalidad , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2 , Carga Viral , Washingtón/epidemiología
7.
MMWR Morb Mortal Wkly Rep ; 69(13): 377-381, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: covidwho-31678

RESUMEN

Older adults are susceptible to severe coronavirus disease 2019 (COVID-19) outcomes as a consequence of their age and, in some cases, underlying health conditions (1). A COVID-19 outbreak in a long-term care skilled nursing facility (SNF) in King County, Washington that was first identified on February 28, 2020, highlighted the potential for rapid spread among residents of these types of facilities (2). On March 1, a health care provider at a second long-term care skilled nursing facility (facility A) in King County, Washington, had a positive test result for SARS-CoV-2, the novel coronavirus that causes COVID-19, after working while symptomatic on February 26 and 28. By March 6, seven residents of this second facility were symptomatic and had positive test results for SARS-CoV-2. On March 13, CDC performed symptom assessments and SARS-CoV-2 testing for 76 (93%) of the 82 facility A residents to evaluate the utility of symptom screening for identification of COVID-19 in SNF residents. Residents were categorized as asymptomatic or symptomatic at the time of testing, based on the absence or presence of fever, cough, shortness of breath, or other symptoms on the day of testing or during the preceding 14 days. Among 23 (30%) residents with positive test results, 10 (43%) had symptoms on the date of testing, and 13 (57%) were asymptomatic. Seven days after testing, 10 of these 13 previously asymptomatic residents had developed symptoms and were recategorized as presymptomatic at the time of testing. The reverse transcription-polymerase chain reaction (RT-PCR) testing cycle threshold (Ct) values indicated large quantities of viral RNA in asymptomatic, presymptomatic, and symptomatic residents, suggesting the potential for transmission regardless of symptoms. Symptom-based screening in SNFs could fail to identify approximately half of residents with COVID-19. Long-term care facilities should take proactive steps to prevent introduction of SARS-CoV-2 (3). Once a confirmed case is identified in an SNF, all residents should be placed on isolation precautions if possible (3), with considerations for extended use or reuse of personal protective equipment (PPE) as needed (4).


Asunto(s)
Enfermedades Asintomáticas/epidemiología , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/epidemiología , Brotes de Enfermedades , Neumonía Viral/epidemiología , Instituciones de Cuidados Especializados de Enfermería , Anciano , Anciano de 80 o más Años , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Femenino , Humanos , Cuidados a Largo Plazo , Masculino , Pandemias , SARS-CoV-2 , Washingtón/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA